Safe Coordination of Human-Robot Firefighting Teams

03/16/2019
by   Esmaeil Seraj, et al.
0

Wildfires are destructive and inflict massive, irreversible harm to victims' lives and natural resources. Researchers have proposed commissioning unmanned aerial vehicles (UAVs) to provide firefighters with real-time tracking information; yet, these UAVs are not able to reason about a fire's track, including current location, measurement, and uncertainty, as well as propagation. We propose a model-predictive, probabilistically safe distributed control algorithm for human-robot collaboration in wildfire fighting. The proposed algorithm overcomes the limitations of prior work by explicitly estimating the latent fire propagation dynamics to enable intelligent, time-extended coordination of the UAVs in support of on-the-ground human firefighters. We derive a novel, analytical bound that enables UAVs to distribute their resources and provides a probabilistic guarantee of the humans' safety while preserving the UAVs' ability to cover an entire fire.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset