SADA: Semantic Adversarial Diagnostic Attacks for Autonomous Applications
One major factor impeding more widespread adoption of deep neural networks (DNNs) is their issues with robustness, which is essential for safety critical applications such as autonomous driving. This has motivated much recent work on adversarial attacks for DNNs, which mostly focus on pixel-level perturbations void of semantic meaning. In contrast, we present a general framework for adversarial black box attacks on agents, which are intimately related to the semantics of the task being performed by the agent. To do this, our proposed adversary (denoted as BBGAN) is trained to appropriately parametrize the environment (black box) with which the agent interacts, such that this agent performs poorly on its dedicated task. We illustrate the application of our BBGAN framework on three different tasks (primarily targeting aspects of autonomous navigation): object detection, self-driving, and autonomous UAV racing. On these tasks, our approach can be used to generate failure cases that fool an agent consistently.
READ FULL TEXT