SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks

11/27/2016 ∙ by Arna Ghosh, et al. ∙ 0

Autonomous driving is one of the most recent topics of interest which is aimed at replicating human driving behavior keeping in mind the safety issues. We approach the problem of learning synthetic driving using generative neural networks. The main idea is to make a controller trainer network using images plus key press data to mimic human learning. We used the architecture of a stable GAN to make predictions between driving scenes using key presses. We train our model on one video game (Road Rash) and tested the accuracy and compared it by running the model on other maps in Road Rash to determine the extent of learning.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.