SA-GAN: Structure-Aware Generative Adversarial Network for Shape-Preserving Synthetic CT Generation

by   Hajar Emami, et al.

In medical image synthesis, model training could be challenging due to the inconsistencies between images of different modalities even with the same patient, typically caused by internal status/tissue changes as different modalities are usually obtained at a different time. This paper proposes a novel deep learning method, Structure-aware Generative Adversarial Network (SA-GAN), that preserves the shapes and locations of in-consistent structures when generating medical images. SA-GAN is employed to generate synthetic computed tomography (synCT) images from magnetic resonance imaging (MRI) with two parallel streams: the global stream translates the input from the MRI to the CT domain while the local stream automatically segments the inconsistent organs, maintains their locations and shapes in MRI, and translates the organ intensities to CT. Through extensive experiments on a pelvic dataset, we demonstrate that SA-GAN provides clinically acceptable accuracy on both synCTs and organ segmentation and supports MR-only treatment planning in disease sites with internal organ status changes.


page 2

page 7

page 11

page 12


Medical Image Synthesis with Context-Aware Generative Adversarial Networks

Computed tomography (CT) is critical for various clinical applications, ...

MRI to CT Translation with GANs

We present a detailed description and reference implementation of prepro...

Structurally aware bidirectional unpaired image to image translation between CT and MR

Magnetic Resonance (MR) Imaging and Computed Tomography (CT) are the pri...

Two-stage MR Image Segmentation Method for Brain Tumors based on Attention Mechanism

Multimodal magnetic resonance imaging (MRI) can reveal different pattern...

Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Modality Transfer

Recently, interest in MR-only treatment planning using synthetic CTs (sy...

Please sign up or login with your details

Forgot password? Click here to reset