S4-Crowd: Semi-Supervised Learning with Self-Supervised Regularisation for Crowd Counting

08/31/2021
by   Haoran Duan, et al.
0

Crowd counting has drawn more attention because of its wide application in smart cities. Recent works achieved promising performance but relied on the supervised paradigm with expensive crowd annotations. To alleviate annotation cost, in this work we proposed a semi-supervised learning framework S4-Crowd, which can leverage both unlabeled/labeled data for robust crowd modelling. In the unsupervised pathway, two self-supervised losses were proposed to simulate the crowd variations such as scale, illumination, etc., based on which and the supervised information pseudo labels were generated and gradually refined. We also proposed a crowd-driven recurrent unit Gated-Crowd-Recurrent-Unit (GCRU), which can preserve discriminant crowd information by extracting second-order statistics, yielding pseudo labels with improved quality. A joint loss including both unsupervised/supervised information was proposed, and a dynamic weighting strategy was employed to balance the importance of the unsupervised loss and supervised loss at different training stages. We conducted extensive experiments on four popular crowd counting datasets in semi-supervised settings. Experimental results suggested the effectiveness of each proposed component in our S4-Crowd framework. Our method also outperformed other state-of-the-art semi-supervised learning approaches on these crowd datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset