S-OPT: A Points Selection Algorithm for Hyper-Reduction in Reduced Order Models

03/29/2022
by   Jessica T. Lauzon, et al.
0

While projection-based reduced order models can reduce the dimension of full order solutions, the resulting reduced models may still contain terms that scale with the full order dimension. Hyper-reduction techniques are sampling-based methods that further reduce this computational complexity by approximating such terms with a much smaller dimension. The goal of this work is to introduce a points selection algorithm developed by Shin and Xiu [SIAM J. Sci. Comput., 38 (2016), pp. A385–A411], as a hyper-reduction method. The selection algorithm is originally proposed as a stochastic collocation method for uncertainty quantification. Since the algorithm aims at maximizing a quantity S that measures both the column orthogonality and the determinant, we refer to the algorithm as S-OPT. Numerical examples are provided to demonstrate the performance of S-OPT and to compare its performance with an over-sampled Discrete Empirical Interpolation (DEIM) algorithm. We found that using the S-OPT algorithm is shown to predict the full order solutions with higher accuracy for a given number of indices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro