DeepAI AI Chat
Log In Sign Up

RUPNet: Residual upsampling network for real-time polyp segmentation

by   Nikhil Kumar Tomar, et al.
Northwestern University

Colorectal cancer is among the most prevalent cause of cancer-related mortality worldwide. Detection and removal of polyps at an early stage can help reduce mortality and even help in spreading over adjacent organs. Early polyp detection could save the lives of millions of patients over the world as well as reduce the clinical burden. However, the detection polyp rate varies significantly among endoscopists. There is numerous deep learning-based method proposed, however, most of the studies improve accuracy. Here, we propose a novel architecture, Residual Upsampling Network (RUPNet) for colon polyp segmentation that can process in real-time and show high recall and precision. The proposed architecture, RUPNet, is an encoder-decoder network that consists of three encoders, three decoder blocks, and some additional upsampling blocks at the end of the network. With an image size of 512 × 512, the proposed method achieves an excellent real-time operation speed of 152.60 frames per second with an average dice coefficient of 0.7658, mean intersection of union of 0.6553, sensitivity of 0.8049, precision of 0.7995, and F2-score of 0.9361. The results suggest that RUPNet can give real-time feedback while retaining high accuracy indicating a good benchmark for early polyp detection.


page 4

page 5


DilatedSegNet: A Deep Dilated Segmentation Network for Polyp Segmentation

Colorectal cancer (CRC) is the second leading cause of cancer-related de...

TransResU-Net: Transformer based ResU-Net for Real-Time Colonoscopy Polyp Segmentation

Colorectal cancer (CRC) is one of the most common causes of cancer and c...

Real-Time Polyp Detection, Localisation and Segmentation in Colonoscopy Using Deep Learning

Computer-aided detection, localisation, and segmentation methods can hel...

TransNetR: Transformer-based Residual Network for Polyp Segmentation with Multi-Center Out-of-Distribution Testing

Colonoscopy is considered the most effective screening test to detect co...

Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution Network

The detection and removal of precancerous polyps through colonoscopy is ...

Y-Net: A deep Convolutional Neural Network for Polyp Detection

Colorectal polyps are important precursors to colon cancer, the third mo...

A Unified Light Framework for Real-time Fault Detection of Freight Train Images

Real-time fault detection for freight trains plays a vital role in guara...