Rule Learning by Modularity

12/23/2022
by   Albert Nössig, et al.
0

In this paper, we present a modular methodology that combines state-of-the-art methods in (stochastic) machine learning with traditional methods in rule learning to provide efficient and scalable algorithms for the classification of vast data sets, while remaining explainable. Apart from evaluating our approach on the common large scale data sets MNIST, Fashion-MNIST and IMDB, we present novel results on explainable classifications of dental bills. The latter case study stems from an industrial collaboration with Allianz Private Krankenversicherungs-Aktiengesellschaft which is an insurance company offering diverse services in Germany.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset