Role colouring graphs in hereditary classes
We study the computational complexity of computing role colourings of graphs in hereditary classes. We are interested in describing the family of hereditary classes on which a role colouring with k colours can be computed in polynomial time. In particular, we wish to describe the boundary between the "hard" and "easy" classes. The notion of a boundary class has been introduced by Alekseev in order to study such boundaries. Our main results are a boundary class for the k-role colouring problem and the related k-coupon colouring problem which has recently received a lot of attention in the literature. The latter result makes use of a technique for generating regular graphs of arbitrary girth which may be of independent interest.
READ FULL TEXT