Robustness against Read Committed for Transaction Templates

07/26/2021 ∙ by Brecht Vandevoort, et al. ∙ 0

The isolation level Multiversion Read Committed (RC), offered by many database systems, is known to trade consistency for increased transaction throughput. Sometimes, transaction workloads can be safely executed under RC obtaining the perfect isolation of serializability at the lower cost of RC. To identify such cases, we introduce an expressive model of transaction programs to better reason about the serializability of transactional workloads. We develop tractable algorithms to decide whether any possible schedule of a workload executed under RC is serializable (referred to as the robustness problem). Our approach yields robust subsets that are larger than those identified by previous methods. We provide experimental evidence that workloads that are robust against RC can be evaluated faster under RC compared to stronger isolation levels. We discuss techniques for making workloads robust against RC by promoting selective read operations to updates. Depending on the scenario, the performance improvements can be considerable. Robustness testing and safely executing transactions under the lower isolation level RC can therefore provide a direct way to increase transaction throughput without changing DBMS internals.



There are no comments yet.


page 12

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.