Robustly Self-Ordered Graphs: Constructions and Applications to Property Testing

12/01/2021
by   Oded Goldreich, et al.
0

A graph G is called self-ordered (a.k.a asymmetric) if the identity permutation is its only automorphism. Equivalently, there is a unique isomorphism from G to any graph that is isomorphic to G. We say that G=(V,E) is robustly self-ordered if the size of the symmetric difference between E and the edge-set of the graph obtained by permuting V using any permutation π:V→ V is proportional to the number of non-fixed-points of π. In this work, we initiate the study of the structure, construction and utility of robustly self-ordered graphs. We show that robustly self-ordered bounded-degree graphs exist (in abundance), and that they can be constructed efficiently, in a strong sense. Specifically, given the index of a vertex in such a graph, it is possible to find all its neighbors in polynomial-time (i.e., in time that is poly-logarithmic in the size of the graph). We also consider graphs of unbounded degree, seeking correspondingly unbounded robustness parameters. We again demonstrate that such graphs (of linear degree) exist (in abundance), and that they can be constructed efficiently, in a strong sense. This turns out to require very different tools. Specifically, we show that the construction of such graphs reduces to the construction of non-malleable two-source extractors (with very weak parameters but with some additional natural features). We demonstrate that robustly self-ordered bounded-degree graphs are useful towards obtaining lower bounds on the query complexity of testing graph properties both in the bounded-degree and the dense graph models. One of the results that we obtain, via such a reduction, is a subexponential separation between the query complexities of testing and tolerant testing of graph properties in the bounded-degree graph model.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
02/15/2021

Testing properties of signed graphs

In graph property testing the task is to distinguish whether a graph sat...
research
04/14/2020

Dichotomy for Graph Homomorphisms with Complex Values on Bounded Degree Graphs

The complexity of graph homomorphisms has been a subject of intense stud...
research
05/08/2019

Testing Bipartitness in an Augmented VDF Bounded-Degree Graph Model

In a recent work (ECCC, TR18-171, 2018), we introduced models of testing...
research
09/22/2019

On the Characterization of 1-sided error Strongly-Testable Graph Properties for bounded-degree graphs, including an appendix

We study property testing of (di)graph properties in bounded-degree grap...
research
03/13/2019

Bounded maximum degree conjecture holds precisely for c-crossing-critical graphs with c ≤ 12

We study c-crossing-critical graphs, which are the minimal graphs that r...
research
09/27/2021

Constructing bounded degree graphs with prescribed degree and neighbor degree sequences

Let D = d_1, d_2, …, d_n and F = f_1, f_2,…, f_n be two sequences of pos...
research
04/30/2021

Graph Traversals as Universal Constructions

We exploit a decomposition of graph traversals to give a novel character...

Please sign up or login with your details

Forgot password? Click here to reset