Robust Unpaired Single Image Super-Resolution of Faces

01/22/2022
by   Saurabh Goswami, et al.
0

We propose an adversarial attack for facial class-specific Single Image Super-Resolution (SISR) methods. Existing attacks, such as the Fast Gradient Sign Method (FGSM) or the Projected Gradient Descent (PGD) method, are either fast but ineffective, or effective but prohibitively slow on these networks. By closely inspecting the surface that the MSE loss, used to train such networks, traces under varying degradations, we were able to identify its parameterizable property. We leverage this property to propose an adverasrial attack that is able to locate the optimum degradation (effective) without needing multiple gradient-ascent steps (fast). Our experiments show that the proposed method is able to achieve a better speed vs effectiveness trade-off than the state-of-theart adversarial attacks, such as FGSM and PGD, for the task of unpaired facial as well as class-specific SISR.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset