Robust Secure Transmission for Active RIS Enabled Symbiotic Radio Multicast Communications
In this paper, we propose a robust secure transmission scheme for an active reconfigurable intelligent surface (RIS) enabled symbiotic radio (SR) system in the presence of multiple eavesdroppers (Eves). In the considered system, the active RIS is adopted to enable the secure transmission of primary signals from the primary transmitter to multiple primary users in a multicasting manner, and simultaneously achieve its own information delivery to the secondary user by riding over the primary signals. Taking into account the imperfect channel state information (CSI) related with Eves, we formulate the system power consumption minimization problem by optimizing the transmit beamforming and reflection beamforming for the bounded and statistical CSI error models, taking the worst-case SNR constraints and the SNR outage probability constraints at the Eves into considerations, respectively. Specifically, the S-Procedure and the Bernstein-Type Inequality are implemented to approximately transform the worst-case SNR and the SNR outage probability constraints into tractable forms, respectively. After that, the formulated problems can be solved by the proposed alternating optimization (AO) algorithm with the semi-definite relaxation and sequential rank-one constraint relaxation techniques. Numerical results show that the proposed active RIS scheme can reduce up to 27.0 consumption compared to the passive RIS.
READ FULL TEXT