Robust Routing in Interdependent Networks
We consider a model of two interdependent networks, where every node in one network depends on one or more supply nodes in the other network and a node fails if it loses all of its supply nodes. We develop algorithms to compute the failure probability of a path, and obtain the most reliable path between a pair of nodes in a network, under the condition that each supply node fails independently with a given probability. Our work generalizes the classical shared risk group model, by considering multiple risks associated with a node and letting a node fail if all the risks occur. Moreover, we study the diverse routing problem by considering two paths between a pair of nodes. We define two paths to be d-failure resilient if at least one path survives after removing d or fewer supply nodes, which generalizes the concept of disjoint paths in a single network, and risk-disjoint paths in a classical shared risk group model. We compute the probability that both paths fail, and develop algorithms to compute the most reliable pair of paths.
READ FULL TEXT