Robust Reconfigurable Intelligent Surfaces via Invariant Risk and Causal Representations

05/04/2021 ∙ by Sumudu Samarakoon, et al. ∙ 0

In this paper, the problem of robust reconfigurable intelligent surface (RIS) system design under changes in data distributions is investigated. Using the notion of invariant risk minimization (IRM), an invariant causal representation across multiple environments is used such that the predictor is simultaneously optimal for each environment. A neural network-based solution is adopted to seek the predictor and its performance is validated via simulations against an empirical risk minimization-based design. Results show that leveraging invariance yields more robustness against unseen and out-of-distribution testing environments.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.