Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost

03/15/2012
by   Ping Li, et al.
0

Logitboost is an influential boosting algorithm for classification. In this paper, we develop robust logitboost to provide an explicit formulation of tree-split criterion for building weak learners (regression trees) for logitboost. This formulation leads to a numerically stable implementation of logitboost. We then propose abc-logitboost for multi-class classification, by combining robust logitboost with the prior work of abc-boost. Previously, abc-boost was implemented as abc-mart using the mart algorithm. Our extensive experiments on multi-class classification compare four algorithms: mart, abcmart, (robust) logitboost, and abc-logitboost, and demonstrate the superiority of abc-logitboost. Comparisons with other learning methods including SVM and deep learning are also available through prior publications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro