Robust Linear Discriminant Analysis Using Ratio Minimization of L1,2-Norms
As one of the most popular linear subspace learning methods, the Linear Discriminant Analysis (LDA) method has been widely studied in machine learning community and applied to many scientific applications. Traditional LDA minimizes the ratio of squared L2-norms, which is sensitive to outliers. In recent research, many L1-norm based robust Principle Component Analysis methods were proposed to improve the robustness to outliers. However, due to the difficulty of L1-norm ratio optimization, so far there is no existing work to utilize sparsity-inducing norms for LDA objective. In this paper, we propose a novel robust linear discriminant analysis method based on the L1,2-norm ratio minimization. Minimizing the L1,2-norm ratio is a much more challenging problem than the traditional methods, and there is no existing optimization algorithm to solve such non-smooth terms ratio problem. We derive a new efficient algorithm to solve this challenging problem, and provide a theoretical analysis on the convergence of our algorithm. The proposed algorithm is easy to implement, and converges fast in practice. Extensive experiments on both synthetic data and nine real benchmark data sets show the effectiveness of the proposed robust LDA method.
READ FULL TEXT