Robust Invisible Hyperlinks in Physical Photographs Based on 3D Rendering Attacks

12/03/2019
by   Jun Jia, et al.
17

In the era of multimedia and Internet, people are eager to obtain information from offline to online. Quick Response (QR) codes and digital watermarks help us access information quickly. However, QR codes look ugly and invisible watermarks can be easily broken in physical photographs. Therefore, this paper proposes a novel method to embed hyperlinks into natural images, making the hyperlinks invisible for human eyes but detectable for mobile devices. Our method is an end-to-end neural network with an encoder to hide information and a decoder to recover information. From original images to physical photographs, camera imaging process will introduce a series of distortion such as noise, blur, and light. To train a robust decoder against the physical distortion from the real world, a distortion network based on 3D rendering is inserted between the encoder and the decoder to simulate the camera imaging process. Besides, in order to maintain the visual attraction of the image with hyperlinks, we propose a loss function based on just noticeable difference (JND) to supervise the training of encoder. Experimental results show that our approach outperforms the previous method in both simulated and real situations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset