Robust error bounds for the Navier-Stokes equations using implicit-explicit second order BDF method with variable steps
This paper studies fully discrete finite element approximations to the Navier-Stokes equations using inf-sup stable elements and grad-div stabilization. For the time integration two implicit-explicit second order backward differentiation formulae (BDF2) schemes are applied. In both the laplacian is implicit while the nonlinear term is explicit, in the first one, and semi-implicit, in the second one. The grad-div stabilization allow us to prove error bounds in which the constants are independent of inverse powers of the viscosity. Error bounds of order r in space are obtained for the L^2 error of the velocity using piecewise polynomials of degree r to approximate the velocity together with second order bounds in time, both for fixed time step methods and for methods with variable time steps. A CFL-type condition is needed for the method in which the nonlinear term is explicit relating time step and spatial mesh sizes parameters.
READ FULL TEXT