Robust Deep Gaussian Processes

04/04/2019
by   Jeremias Knoblauch, et al.
0

This report provides an in-depth overview over the implications and novelty Generalized Variational Inference (GVI) (Knoblauch et al., 2019) brings to Deep Gaussian Processes (DGPs) (Damianou & Lawrence, 2013). Specifically, robustness to model misspecification as well as principled alternatives for uncertainty quantification are motivated with an information-geometric view. These modifications have clear interpretations and can be implemented in less than 100 lines of Python code. Most importantly, the corresponding empirical results show that DGPs can greatly benefit from the presented enhancements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset