Robust Cross-domain CT Image Reconstruction via Bayesian Noise Uncertainty Alignment

02/26/2023
by   Kecheng Chen, et al.
0

In this work, we tackle the problem of robust computed tomography (CT) reconstruction issue under a cross-domain scenario, i.e., the training CT data as the source domain and the testing CT data as the target domain are collected from different anatomical regions. Due to the mismatches of the scan region and corresponding scan protocols, there is usually a difference of noise distributions between source and target domains (a.k.a. noise distribution shifts), resulting in a catastrophic deterioration of the reconstruction performance on target domain. To render a robust cross-domain CT reconstruction performance, instead of using deterministic models (e.g., convolutional neural network), a Bayesian-endowed probabilistic framework is introduced into robust cross-domain CT reconstruction task due to its impressive robustness. Under this probabilistic framework, we propose to alleviate the noise distribution shifts between source and target domains via implicit noise modeling schemes in the latent space and image space, respectively. Specifically, a novel Bayesian noise uncertainty alignment (BNUA) method is proposed to conduct implicit noise distribution modeling and alignment in the latent space. Moreover, an adversarial learning manner is imposed to reduce the discrepancy of noise distribution between two domains in the image space via a novel residual distribution alignment (RDA). Extensive experiments on the head and abdomen scans show that our proposed method can achieve a better performance of robust cross-domain CT reconstruction than existing approaches in terms of both quantitative and qualitative results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset