Robust Causal Inference Under Covariate Shift via Worst-Case Subpopulation Treatment Effects

07/05/2020
by   Sookyo Jeong, et al.
0

We propose the worst-case treatment effect (WTE) across all subpopulations of a given size, a conservative notion of topline treatment effect. Compared to the average treatment effect (ATE) that solely relies on the covariate distribution of collected data, WTE is robust to unanticipated covariate shifts, and ensures positive findings guarantee uniformly valid treatment effects over underrepresented minority groups. We develop a semiparametrically efficient estimator for the WTE, leveraging machine learning-based estimates of heterogenous treatment effects and propensity scores. By virtue of satisfying a key (Neyman) orthogonality property, our estimator enjoys central limit behavior—oracle rates with true nuisance parameters—even when estimates of nuisance parameters converge at slower rates. For both observational and randomized studies, we prove that our estimator achieves the optimal asymptotic variance, by establishing a semiparametric efficiency lower bound. On real datasets where robustness to covariate shift is of core concern, we illustrate the non-robustness of ATE under even mild distributional shift, and demonstrate that the WTE guards against brittle findings that are invalidated by unanticipated covariate shifts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset