Robust Binary Models by Pruning Randomly-initialized Networks

02/03/2022
by   Chen Liu, et al.
8

We propose ways to obtain robust models against adversarial attacks from randomly-initialized binary networks. Unlike adversarial training, which learns the model parameters, we in contrast learn the structure of the robust model by pruning a randomly-initialized binary network. Our method confirms the strong lottery ticket hypothesis in the presence of adversarial attacks. Compared to the results obtained in a non-adversarial setting, we in addition improve the performance and compression of the model by 1) using an adaptive pruning strategy for different layers, and 2) using a different initialization scheme such that all model parameters are initialized either to +1 or -1. Our extensive experiments demonstrate that our approach performs not only better than the state-of-the art for robust binary networks; it also achieves comparable or even better performance than full-precision network training methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro