Robust and Scalable Entity Alignment in Big Data

04/19/2020
by   James Flamino, et al.
0

Entity alignment has always had significant uses within a multitude of diverse scientific fields. In particular, the concept of matching entities across networks has grown in significance in the world of social science as communicative networks such as social media have expanded in scale and popularity. With the advent of big data, there is a growing need to provide analysis on graphs of massive scale. However, with millions of nodes and billions of edges, the idea of alignment between a myriad of graphs of similar scale using features extracted from potentially sparse or incomplete datasets becomes daunting. In this paper we will propose a solution to the issue of large-scale alignments in the form of a multi-step pipeline. Within this pipeline we introduce scalable feature extraction for robust temporal attributes, accompanied by novel and efficient clustering algorithms in order to find groupings of similar nodes across graphs. The features and their clusters are fed into a versatile alignment stage that accurately identifies partner nodes among millions of possible matches. Our results show that the pipeline can process large data sets, achieving efficient runtimes within the memory constraints.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset