Robust Algorithms for the Secretary Problem
In classical secretary problems, a sequence of n elements arrive in a uniformly random order, and we want to choose a single item, or a set of size K. The random order model allows us to escape from the strong lower bounds for the adversarial order setting, and excellent algorithms are known in this setting. However, one worrying aspect of these results is that the algorithms overfit to the model: they are not very robust. Indeed, if a few "outlier" arrivals are adversarially placed in the arrival sequence, the algorithms perform poorly. E.g., Dynkin's popular 1/e-secretary algorithm fails with even a single adversarial arrival. We investigate a robust version of the secretary problem. In the Byzantine Secretary model, we have two kinds of elements: green (good) and red (rogue). The values of all elements are chosen by the adversary. The green elements arrive at times uniformly randomly drawn from [0,1]. The red elements, however, arrive at adversarially chosen times. Naturally, the algorithm does not see these colors: how well can it solve secretary problems? We give algorithms which get value comparable to the value of the optimal green set minus the largest green item. Specifically, we give an algorithm to pick K elements that gets within (1-ε) factor of the above benchmark, as long as K ≥poly(ε^-1log n). We extend this to the knapsack secretary problem, for large knapsack size K. For the single-item case, an analogous benchmark is the value of the second-largest green item. For value-maximization, we give a polylog^* n-competitive algorithm, using a multi-layered bucketing scheme that adaptively refines our estimates of second-max over time. For probability-maximization, we show the existence of a good randomized algorithm, using the minimax principle.
READ FULL TEXT