RoboBEV: Towards Robust Bird's Eye View Perception under Corruptions
The recent advances in camera-based bird's eye view (BEV) representation exhibit great potential for in-vehicle 3D perception. Despite the substantial progress achieved on standard benchmarks, the robustness of BEV algorithms has not been thoroughly examined, which is critical for safe operations. To bridge this gap, we introduce RoboBEV, a comprehensive benchmark suite that encompasses eight distinct corruptions, including Bright, Dark, Fog, Snow, Motion Blur, Color Quant, Camera Crash, and Frame Lost. Based on it, we undertake extensive evaluations across a wide range of BEV-based models to understand their resilience and reliability. Our findings indicate a strong correlation between absolute performance on in-distribution and out-of-distribution datasets. Nonetheless, there are considerable variations in relative performance across different approaches. Our experiments further demonstrate that pre-training and depth-free BEV transformation has the potential to enhance out-of-distribution robustness. Additionally, utilizing long and rich temporal information largely helps with robustness. Our findings provide valuable insights for designing future BEV models that can achieve both accuracy and robustness in real-world deployments.
READ FULL TEXT