RLIBM-ALL: A Novel Polynomial Approximation Method to Produce Correctly Rounded Results for Multiple Representations and Rounding Modes

08/15/2021
by   Jay P. Lim, et al.
0

Mainstream math libraries for floating point (FP) do not produce correctly rounded results for all inputs. In contrast, CR-LIBM and RLIBM provide correctly rounded implementations for a specific FP representation with one rounding mode. Using such libraries for a representation with a new rounding mode or with different precision will result in wrong results due to double rounding. This paper proposes a novel method to generate a single polynomial approximation that produces correctly rounded results for all inputs for multiple rounding modes and multiple precision configurations. To generate a correctly rounded library for n-bits, our key idea is to generate such a polynomial approximation for a representation with n+2-bits using the round-to-odd mode. We prove that the resulting polynomial approximation will produce correctly rounded results for all five rounding modes in the standard and for multiple representations with k-bits such that |E| +1 < k ≤ n, where |E| is the number of exponent bits in the representation. Building on our prior work in the RLIBM project, we also approximate the correctly rounded result when we generate the library with n+2-bits using the round-to-odd mode. We also generate polynomial approximations by structuring it as a linear programming problem but propose enhancements to polynomial generation to handle the round-to-odd mode. Our prototype is the first 32-bit float library that produces correctly rounded results with all rounding modes in the IEEE standard for all inputs with a single polynomial approximation. It also produces correctly rounded results for any FP configuration ranging from 10-bits to 32-bits while also being faster than mainstream libraries.

READ FULL TEXT

page 1

page 7

research
07/09/2020

A Novel Approach to Generate Correctly Rounded Math Libraries for New Floating Point Representations

Given the importance of floating-point (FP) performance in numerous doma...
research
11/25/2021

RLIBM-PROG: Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries

This paper presents a novel method for generating a single polynomial ap...
research
04/08/2021

RLIBM-32: High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations

This paper proposes a set of techniques to develop correctly rounded mat...
research
09/26/2019

Hardware Design and Analysis of the ACE and WAGE Ciphers

This paper presents the hardware design and analysis of ACE and WAGE, tw...
research
07/27/2021

Accelerated Multiple Precision Direct Method and Mixed Precision Iterative Refinement on Python Programming Environment

Current Python programming environment does not have any reliable and ef...
research
04/11/2020

From Quantized DNNs to Quantizable DNNs

This paper proposes Quantizable DNNs, a special type of DNNs that can fl...

Please sign up or login with your details

Forgot password? Click here to reset