RIO: Minimizing User Interaction in Debugging of Knowledge Bases

02/11/2013
by   Patrick Rodler, et al.
0

The best currently known interactive debugging systems rely upon some meta-information in terms of fault probabilities in order to improve their efficiency. However, misleading meta information might result in a dramatic decrease of the performance and its assessment is only possible a-posteriori. Consequently, as long as the actual fault is unknown, there is always some risk of suboptimal interactions. In this work we present a reinforcement learning strategy that continuously adapts its behavior depending on the performance achieved and minimizes the risk of using low-quality meta information. Therefore, this method is suitable for application scenarios where reliable prior fault estimates are difficult to obtain. Using diverse real-world knowledge bases, we show that the proposed interactive query strategy is scalable, features decent reaction time, and outperforms both entropy-based and no-risk strategies on average w.r.t. required amount of user interaction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro