Rigorous validation of a Hopf bifurcation in the Kuramoto-Sivashinsky PDE

09/28/2020
by   Jan Bouwe van den Berg, et al.
0

We use computer-assisted proof techniques to prove that a branch of non-trivial equilibrium solutions in the Kuramoto-Sivashinsky partial differential equation undergoes a Hopf bifurcation. Furthermore, we obtain an essentially constructive proof of the family of time-periodic solutions near the Hopf bifurcation. To this end, near the Hopf point we rewrite the time periodic problem for the Kuramoto-Sivashinsky equation in a desingularized formulation. We then apply a parametrized Newton-Kantorovich approach to validate a solution branch of time-periodic orbits. By construction, this solution branch includes the Hopf bifurcation point.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro