Riemannian Perspective on Matrix Factorization

02/01/2021 ∙ by Kwangjun Ahn, et al. ∙ 0

We study the non-convex matrix factorization approach to matrix completion via Riemannian geometry. Based on an optimization formulation over a Grassmannian manifold, we characterize the landscape based on the notion of principal angles between subspaces. For the fully observed case, our results show that there is a region in which the cost is geodesically convex, and outside of which all critical points are strictly saddle. We empirically study the partially observed case based on our findings.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.