Riemannian Newton methods for energy minimization problems of Kohn-Sham type

07/25/2023
by   R. Altmann, et al.
0

This paper is devoted to the numerical solution of constrained energy minimization problems arising in computational physics and chemistry such as the Gross-Pitaevskii and Kohn-Sham models. In particular, we introduce the Riemannian Newton methods on the infinite-dimensional Stiefel and Grassmann manifolds. We study the geometry of these two manifolds, its impact on the Newton algorithms, and present expressions of the Riemannian Hessians in the infinite-dimensional setting, which are suitable for variational spatial discretizations. A series of numerical experiments illustrates the performance of the methods and demonstrates its supremacy compared to other well-established schemes such as the self-consistent field iteration and gradient descent schemes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro