Riemannian Metric Learning for Symmetric Positive Definite Matrices
Over the past few years, symmetric positive definite (SPD) matrices have been receiving considerable attention from computer vision community. Though various distance measures have been proposed in the past for comparing SPD matrices, the two most widely-used measures are affine-invariant distance and log-Euclidean distance. This is because these two measures are true geodesic distances induced by Riemannian geometry. In this work, we focus on the log-Euclidean Riemannian geometry and propose a data-driven approach for learning Riemannian metrics/geodesic distances for SPD matrices. We show that the geodesic distance learned using the proposed approach performs better than various existing distance measures when evaluated on face matching and clustering tasks.
READ FULL TEXT