Riemannian CUR Decompositions for Robust Principal Component Analysis

06/17/2022
by   Keaton Hamm, et al.
0

Robust Principal Component Analysis (PCA) has received massive attention in recent years. It aims to recover a low-rank matrix and a sparse matrix from their sum. This paper proposes a novel nonconvex Robust PCA algorithm, coined Riemannian CUR (RieCUR), which utilizes the ideas of Riemannian optimization and robust CUR decompositions. This algorithm has the same computational complexity as Iterated Robust CUR, which is currently state-of-the-art, but is more robust to outliers. RieCUR is also able to tolerate a significant amount of outliers, and is comparable to Accelerated Alternating Projections, which has high outlier tolerance but worse computational complexity than the proposed method. Thus, the proposed algorithm achieves state-of-the-art performance on Robust PCA both in terms of computational complexity and outlier tolerance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset