Rewriting in Free Hypergraph Categories

12/27/2017
by   Fabio Zanasi, et al.
0

We study rewriting for equational theories in the context of symmetric monoidal categories where there is a separable Frobenius monoid on each object. These categories, also called hypergraph categories, are increasingly relevant: Frobenius structures recently appeared in cross-disciplinary applications, including the study of quantum processes, dynamical systems and natural language processing. In this work we give a combinatorial characterisation of arrows of a free hypergraph category as cospans of labelled hypergraphs and establish a precise correspondence between rewriting modulo Frobenius structure on the one hand and double-pushout rewriting of hypergraphs on the other. This interpretation allows to use results on hypergraphs to ensure decidability of confluence for rewriting in a free hypergraph category. Our results generalise previous approaches where only categories generated by a single object (props) were considered.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset