Revisiting the Role of Similarity and Dissimilarity in Best Counter Argument Retrieval

04/18/2023
by   Hongguang Shi, et al.
0

This paper studies the task of best counter-argument retrieval given an input argument. Following the definition that the best counter-argument addresses the same aspects as the input argument while having the opposite stance, we aim to develop an efficient and effective model for scoring counter-arguments based on similarity and dissimilarity metrics. We first conduct an experimental study on the effectiveness of available scoring methods, including traditional Learning-To-Rank (LTR) and recent neural scoring models. We then propose Bipolar-encoder, a novel BERT-based model to learn an optimal representation for simultaneous similarity and dissimilarity. Experimental results show that our proposed method can achieve the accuracy@1 of 49.04%, which significantly outperforms other baselines by a large margin. When combined with an appropriate caching technique, Bipolar-encoder is comparably efficient at prediction time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro