Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

by   Jeremie S. Kim, et al.

In order to shed more light on how RowHammer affects modern and future devices at the circuit-level, we first present an experimental characterization of RowHammer on 1580 DRAM chips (408x DDR3, 652x DDR4, and 520x LPDDR4) from 300 DRAM modules (60x DDR3, 110x DDR4, and 130x LPDDR4) with RowHammer protection mechanisms disabled, spanning multiple different technology nodes from across each of the three major DRAM manufacturers. Our studies definitively show that newer DRAM chips are more vulnerable to RowHammer: as device feature size reduces, the number of activations needed to induce a RowHammer bit flip also reduces, to as few as 9.6k (4.8k to two rows each) in the most vulnerable chip we tested. We evaluate five state-of-the-art RowHammer mitigation mechanisms using cycle-accurate simulation in the context of real data taken from our chips to study how the mitigation mechanisms scale with chip vulnerability. We find that existing mechanisms either are not scalable or suffer from prohibitively large performance overheads in projected future devices given our observed trends of RowHammer vulnerability. Thus, it is critical to research more effective solutions to RowHammer.


Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices

RowHammer is a circuit-level DRAM vulnerability, where repeatedly activa...

BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows

Aggressive memory density scaling causes modern DRAM devices to suffer f...

TRRespass: Exploiting the Many Sides of Target Row Refresh

After a plethora of high-profile RowHammer attacks, CPU and DRAM vendors...

A Deeper Look into RowHammer`s Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

RowHammer is a circuit-level DRAM vulnerability where repeatedly accessi...

Recent Advances in DRAM and Flash Memory Architectures

This article features extended summaries and retrospectives of some of t...

Understanding and Exploiting Design-Induced Latency Variation in Modern DRAM Chips

Variation has been shown to exist across the cells within a modern DRAM ...

Fundamentally Understanding and Solving RowHammer

We provide an overview of recent developments and future directions in t...

Please sign up or login with your details

Forgot password? Click here to reset