Review of Applications of Generalized Regression Neural Networks in Identification and Control of Dynamic Systems
This paper depicts a brief revision of Generalized Regression Neural Networks (GRNN) applications in system identification and control of dynamic systems. In addition, a comparison study between the performance of back-propagation neural networks and GRNN is presented for system identification problems. The results of the comparison confirm that GRNN has shorter training time and higher accuracy than the counterpart back-propagation neural networks.
READ FULL TEXT