Review: Metaheuristic Search-Based Fuzzy Clustering Algorithms

01/21/2018
by   Waleed Alomoush, et al.
0

Fuzzy clustering is a famous unsupervised learning method used to collecting similar data elements within cluster according to some similarity measurement. But, clustering algorithms suffer from some drawbacks. Among the main weakness including, selecting the initial cluster centres and the appropriate clusters number is normally unknown. These weaknesses are considered the most challenging tasks in clustering algorithms. This paper introduces a comprehensive review of metahueristic search to solve fuzzy clustering algorithms problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro