Reverse-Mode Automatic Differentiation of Compiled Programs
Tools for algorithmic differentiation (AD) provide accurate derivatives of computer-implemented functions for use in, e. g., optimization and machine learning (ML). However, they often require the source code of the function to be available in a restricted set of programming languages. As a step towards making AD accessible for code bases with cross-language or closed-source components, we recently presented the forward-mode AD tool Derivgrind. It inserts forward-mode AD logic into the machine code of a compiled program using the Valgrind dynamic binary instrumentation framework. This work extends Derivgrind, adding the capability to record the real-arithmetic evaluation tree, and thus enabling operator overloading style reverse-mode AD for compiled programs. We maintain the high level of correctness reported for Derivgrind's forward mode, failing the same few testcases in an extensive test suite for the same well-understood reasons. Runtime-wise, the recording slows down the execution of a compiled 64-bit benchmark program by a factor of about 180.
READ FULL TEXT