Rethinking Self-Supervised Learning: Small is Beautiful

03/25/2021 ∙ by Yun-Hao Cao, et al. ∙ 0

Self-supervised learning (SSL), in particular contrastive learning, has made great progress in recent years. However, a common theme in these methods is that they inherit the learning paradigm from the supervised deep learning scenario. Current SSL methods are often pretrained for many epochs on large-scale datasets using high resolution images, which brings heavy computational cost and lacks flexibility. In this paper, we demonstrate that the learning paradigm for SSL should be different from supervised learning and the information encoded by the contrastive loss is expected to be much less than that encoded in the labels in supervised learning via the cross entropy loss. Hence, we propose scaled-down self-supervised learning (S3L), which include 3 parts: small resolution, small architecture and small data. On a diverse set of datasets, SSL methods and backbone architectures, S3L achieves higher accuracy consistently with much less training cost when compared to previous SSL learning paradigm. Furthermore, we show that even without a large pretraining dataset, S3L can achieve impressive results on small data alone. Our code has been made publically available at



There are no comments yet.


page 5

page 12

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.