Rethinking Ranking-based Loss Functions: Only Penalizing Negative Instances before Positive Ones is Enough
Optimising the approximation of Average Precision (AP) has been widely studied for retrieval. Such methods consider both negative and positive instances before each target positive one according to the definition of AP. However, we argue that only penalizing negative instances before positive ones is enough, because the loss only comes from them. To this end, instead of following the AP-based loss, we propose a new loss, namely Penalizing Negative instances before Positive ones (PNP), which directly minimizes the number of negative instances before each positive one. Meanwhile, limited by the definition of AP, AP-based methods only adopt a specific gradient assignment strategy. We wonder whether there exists better ones. Instead, we systematically investigate different gradient assignment solutions via constructing derivative functions of the loss, resulting in PNP-I with increasing derivative functions and PNP-D with decreasing ones. Because of their gradient assignment strategies, PNP-I tries to make all the relevant instances together, while PNP-D only quickly corrects positive one with fewer negative instances before. Thus, PNP-D may be more suitable for real-world data, which usually contains several local clusters for one class. Extensive evaluations on three standard retrieval datasets also show that PNP-D achieves the state-of-the-art performance.
READ FULL TEXT