Rethinking Perturbations in Encoder-Decoders for Fast Training

04/05/2021
by   Sho Takase, et al.
0

We often use perturbations to regularize neural models. For neural encoder-decoders, previous studies applied the scheduled sampling (Bengio et al., 2015) and adversarial perturbations (Sato et al., 2019) as perturbations but these methods require considerable computational time. Thus, this study addresses the question of whether these approaches are efficient enough for training time. We compare several perturbations in sequence-to-sequence problems with respect to computational time. Experimental results show that the simple techniques such as word dropout (Gal and Ghahramani, 2016) and random replacement of input tokens achieve comparable (or better) scores to the recently proposed perturbations, even though these simple methods are faster. Our code is publicly available at https://github.com/takase/rethink_perturbations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset