Rethinking Assumptions in Deep Anomaly Detection

05/30/2020
by   Lukas Ruff, et al.
51

Though anomaly detection (AD) can be viewed as a classification problem (nominal vs. anomalous) it is usually treated in an unsupervised manner since one typically does not have access to, or it is infeasible to utilize, a dataset that sufficiently characterizes what it means to be "anomalous." In this paper we present results demonstrating that this intuition surprisingly does not extend to deep AD on images. For a recent AD benchmark on ImageNet, classifiers trained to discern between normal samples and just a few (64) random natural images are able to outperform the current state of the art in deep AD. We find that this approach is also very effective at other common image AD benchmarks. Experimentally we discover that the multiscale structure of image data makes example anomalies exceptionally informative.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset