Restoring Spatially-Heterogeneous Distortions using Mixture of Experts Network

09/30/2020
by   Sijin Kim, et al.
0

In recent years, deep learning-based methods have been successfully applied to the image distortion restoration tasks. However, scenarios that assume a single distortion only may not be suitable for many real-world applications. To deal with such cases, some studies have proposed sequentially combined distortions datasets. Viewing in a different point of combining, we introduce a spatially-heterogeneous distortion dataset in which multiple corruptions are applied to the different locations of each image. In addition, we also propose a mixture of experts network to effectively restore a multi-distortion image. Motivated by the multi-task learning, we design our network to have multiple paths that learn both common and distortion-specific representations. Our model is effective for restoring real-world distortions and we experimentally verify that our method outperforms other models designed to manage both single distortion and multiple distortions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset