Resources and Evaluations for Multi-Distribution Dense Information Retrieval

06/21/2023
by   Soumya Chatterjee, et al.
0

We introduce and define the novel problem of multi-distribution information retrieval (IR) where given a query, systems need to retrieve passages from within multiple collections, each drawn from a different distribution. Some of these collections and distributions might not be available at training time. To evaluate methods for multi-distribution retrieval, we design three benchmarks for this task from existing single-distribution datasets, namely, a dataset based on question answering and two based on entity matching. We propose simple methods for this task which allocate the fixed retrieval budget (top-k passages) strategically across domains to prevent the known domains from consuming most of the budget. We show that our methods lead to an average of 3.8+ and up to 8.0 points improvements in Recall@100 across the datasets and that improvements are consistent when fine-tuning different base retrieval models. Our benchmarks are made publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro