Resource Transition Systems and Full Abstraction for Linear Higher-Order Effectful Systems

06/24/2021
by   Ugo Dal Lago, et al.
0

We investigate program equivalence for linear higher-order(sequential) languages endowed with primitives for computational effects. More specifically, we study operationally-based notions of program equivalence for a linear λ-calculus with explicit copying and algebraic effects à la Plotkin and Power. Such a calculus makes explicit the interaction between copying and linearity, which are intensional aspects of computation, with effects, which are, instead, extensional. We review some of the notions of equivalences for linear calculi proposed in the literature and show their limitations when applied to effectful calculi where copying is a first-class citizen. We then introduce resource transition systems, namely transition systems whose states are built over tuples of programs representing the available resources, as an operational semantics accounting for both intensional and extensional interactive behaviors of programs. Our main result is a sound and complete characterization of contextual equivalence as trace equivalence defined on top of resource transition systems.

READ FULL TEXT

page 1

page 2

page 3

page 4

02/12/2019

Program Equivalence for Algebraic Effects via Modalities

This dissertation is concerned with the study of program equivalence and...
05/18/2021

An Internal Language for Categories Enriched over Generalised Metric Spaces

Programs with a continuous state space or that interact with physical pr...
01/19/2021

On the Decidability of Behavioral Equivalences for (P,P)-PRS

We study resource similarity and resource bisimilarity – congruent restr...
01/21/2021

Complete trace models of state and control

We consider a hierarchy of four typed call-by-value languages with eithe...
10/20/2020

Algodynamics: Teaching Algorithms using Interactive Transition Systems

The importance of algorithms and data structures in computer science cur...
11/23/2017

A Behavioural Theory for Interactions in Collective-Adaptive Systems

We propose a process calculus, named AbC, to study the behavioural theor...
01/20/2020

Modular coinduction up-to for higher-order languages via first-order transition systems

The bisimulation proof method can be enhanced by employing `bisimulation...