Resource reduction for distributed quantum information processing using quantum multiplexed photons
Distributed quantum information processing is based on the transmission of quantum data over lossy channels between quantum processing nodes. These nodes may be separated by a few microns or on planetary scale distances, but transmission losses due to absorption/scattering in the channel are the major source of error for most distributed quantum information tasks. Of course quantum error detection (QED) /correction (QEC) techniques can be used to mitigate such effects but error detection approaches have severe performance issues due to the signaling constraints between nodes and so error correction approaches are preferable - assuming one has sufficient high quality local operations. Typical loss based QEC utilizes a one qubit per photon encoding. However single photons can carry more than one qubit of information and so our focus in this work is to explore whether loss-based quantum error correction utilizing quantum multiplexed photons is viable and advantageous, especially as photon loss results in more than one qubit of information being lost.
READ FULL TEXT