Resource Allocation in Heterogenous Full-duplex OFDMA Networks: Design and Analysis

02/08/2018
by   Peyman Tehrani, et al.
0

Recent studies indicate the feasibility of full-duplex (FD) bidirectional wireless communications. Due to its potential to increase the capacity, analyzing the performance of a cellular network that contains full-duplex devices is crucial. In this paper, we consider maximizing the weighted sum-rate of downlink and uplink of an FD heterogeneous OFDMA network where each cell consists of an imperfect FD base-station (BS) and a mixture of half-duplex and imperfect full-duplex mobile users. To this end, first, the joint problem of sub-channel assignment and power allocation for a single cell network is investigated. Then, the proposed algorithms are extended for solving the optimization problem for an FD heterogeneous network in which intra-cell and inter-cell interferences are taken into account. Simulation results demonstrate that in a single cell network, when all the users and the BSs are perfect FD nodes, the network throughput could be doubled. Otherwise, the performance improvement is limited by the inter-cell interference, inter-node interference, and self-interference. We also investigate the effect of the percentage of FD users on the network performance in both indoor and outdoor scenarios, and analyze the effect of the self-interference cancellation capability of the FD nodes on the network performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro