Resource Allocation for a Wireless Coexistence Management System Based on Reinforcement Learning

05/24/2018
by   Philip Soeffker, et al.
0

In industrial environments, an increasing amount of wireless devices are used, which utilize license-free bands. As a consequence of these mutual interferences of wireless systems might decrease the state of coexistence. Therefore, a central coexistence management system is needed, which allocates conflict-free resources to wireless systems. To ensure a conflict-free resource utilization, it is useful to predict the prospective medium utilization before resources are allocated. This paper presents a self-learning concept, which is based on reinforcement learning. A simulative evaluation of reinforcement learning agents based on neural networks, called deep Q-networks and double deep Q-networks, was realized for exemplary and practically relevant coexistence scenarios. The evaluation of the double deep Q-network showed that a prediction accuracy of at least 98 scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro