Resolving challenges in deep learning-based analyses of histopathological images using explanation methods

08/15/2019
by   Miriam Hägele, et al.
3

Deep learning has recently gained popularity in digital pathology due to its high prediction quality. However, the medical domain requires explanation and insight for a better understanding beyond standard quantitative performance evaluation. Recently, explanation methods have emerged, which are so far still rarely used in medicine. This work shows their application to generate heatmaps that allow to resolve common challenges encountered in deep learning-based digital histopathology analyses. These challenges comprise biases typically inherent to histopathology data. We study binary classification tasks of tumor tissue discrimination in publicly available haematoxylin and eosin slides of various tumor entities and investigate three types of biases: (1) biases which affect the entire dataset, (2) biases which are by chance correlated with class labels and (3) sampling biases. While standard analyses focus on patch-level evaluation, we advocate pixel-wise heatmaps, which offer a more precise and versatile diagnostic instrument and furthermore help to reveal biases in the data. This insight is shown to not only detect but also to be helpful to remove the effects of common hidden biases, which improves generalization within and across datasets. For example, we could see a trend of improved area under the receiver operating characteristic curve by 5 Explanation techniques are thus demonstrated to be a helpful and highly relevant tool for the development and the deployment phases within the life cycle of real-world applications in digital pathology.

READ FULL TEXT

page 1

page 8

page 9

page 15

page 16

page 19

09/18/2019

Quantitative Impact of Label Noise on the Quality of Segmentation of Brain Tumors on MRI scans

Over the last few years, deep learning has proven to be a great solution...
10/27/2019

Deep Learning Models for Digital Pathology

Histopathology images; microscopy images of stained tissue biopsies cont...
09/20/2021

Skin Deep Unlearning: Artefact and Instrument Debiasing in the Context of Melanoma Classification

Convolutional Neural Networks have demonstrated dermatologist-level perf...
05/20/2020

A Study of Deep Learning Colon Cancer Detection in Limited Data Access Scenarios

Digitization of histopathology slides has led to several advances, from ...
02/28/2019

PixelSteganalysis: Pixel-wise Hidden Information Removal with Low Visual Degradation

It is difficult to detect and remove secret images that are hidden in na...
08/29/2021

Behind the Scenes: An Exploration of Trigger Biases Problem in Few-Shot Event Classification

Few-Shot Event Classification (FSEC) aims at developing a model for even...